Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Infect ; : 106161, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663754

RESUMO

OBJECTIVES: Current guidelines recommend broad-spectrum antibiotics for high-severity community-acquired pneumonia (CAP), potentially contributing to antimicrobial resistance (AMR). We aim to compare outcomes in CAP patients treated with amoxicillin (narrow-spectrum) versus co-amoxiclav (broad-spectrum), to understand if narrow-spectrum antibiotics could be used more widely. METHODS: We analysed electronic health records from adults (≥16y) admitted to hospital with a primary diagnosis of pneumonia between 01-January-2016 and 30-September-2023 in Oxfordshire, United Kingdom. Patients receiving baseline ([-12h,+24h] from admission) amoxicillin or co-amoxiclav were included. The association between 30-day all-cause mortality and baseline antibiotic was examined using propensity score (PS) matching and inverse probability treatment weighting (IPTW) to address confounding by baseline characteristics and disease severity. Subgroup analyses by disease severity and sensitivity analyses with missing covariates imputed were also conducted. RESULTS: Among 16,072 admissions with a primary diagnosis of pneumonia, 9,685 received either baseline amoxicillin or co-amoxiclav. There was no evidence of a difference in 30-day mortality between patients receiving initial co-amoxiclav vs. amoxicillin (PS matching: marginal odds ratio 0.97 [0.76-1.27], p=0.61; IPTW: 1.02 [0.78-1.33], p=0.87). Results remained similar across stratified analyses of mild, moderate, and severe pneumonia. Results were also similar with missing data imputed. There was also no evidence of an association between 30-day mortality and use of additional macrolides or additional doxycycline. CONCLUSIONS: There was no evidence of co-amoxiclav being advantageous over amoxicillin for treatment of CAP in 30-day mortality at a population-level, regardless of disease severity. Wider use of narrow-spectrum empirical treatment of moderate/severe CAP should be considered to curb potential for AMR.

2.
J Infect ; 88(5): 106156, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599549

RESUMO

OBJECTIVES: To identify patterns in inflammatory marker and vital sign responses in adult with suspected bloodstream infection (BSI) and define expected trends in normal recovery. METHODS: We included patients ≥16 y from Oxford University Hospitals with a blood culture taken between 1-January-2016 and 28-June-2021. We used linear and latent class mixed models to estimate trajectories in C-reactive protein (CRP), white blood count, heart rate, respiratory rate and temperature and identify CRP response subgroups. Centile charts for expected CRP responses were constructed via the lambda-mu-sigma method. RESULTS: In 88,348 suspected BSI episodes; 6908 (7.8%) were culture-positive with a probable pathogen, 4309 (4.9%) contained potential contaminants, and 77,131(87.3%) were culture-negative. CRP levels generally peaked 1-2 days after blood culture collection, with varying responses for different pathogens and infection sources (p < 0.0001). We identified five CRP trajectory subgroups: peak on day 1 (36,091; 46.3%) or 2 (4529; 5.8%), slow recovery (10,666; 13.7%), peak on day 6 (743; 1.0%), and low response (25,928; 33.3%). Centile reference charts tracking normal responses were constructed from those peaking on day 1/2. CONCLUSIONS: CRP and other infection response markers rise and recover differently depending on clinical syndrome and pathogen involved. However, centile reference charts, that account for these differences, can be used to track if patients are recovering line as expected and to help personalise infection.

3.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529900

RESUMO

Multi-drug-resistant Neisseria gonorrhoeae infection is a significant public health risk. Rapidly detecting N. gonorrhoeae and antimicrobial-resistant (AMR) determinants by metagenomic sequencing of urine is possible, although high levels of host DNA and overgrowth of contaminating species hamper sequencing and limit N. gonorrhoeae genome coverage. We performed Nanopore sequencing of nucleic acid amplification test-positive urine samples and culture-positive urethral swabs with and without probe-based target enrichment, using a custom SureSelect panel, to investigate whether selective enrichment of N. gonorrhoeae DNA improves detection of both species and AMR determinants. Probes were designed to cover the entire N. gonorrhoeae genome, with tenfold enrichment of probes covering selected AMR determinants. Multiplexing was tested in a subset of samples. The proportion of sequence bases classified as N. gonorrhoeae increased in all samples after enrichment, from a median (IQR) of 0.05 % (0.01-0.1 %) to 76 % (42-82 %), giving a corresponding median improvement in fold genome coverage of 365 times (112-720). Over 20-fold coverage, required for robust AMR determinant detection, was achieved in 13/15(87 %) samples, compared to 2/15(13 %) without enrichment. The four samples multiplexed together also achieved >20-fold genome coverage. Coverage of AMR determinants was sufficient to predict resistance conferred by changes in chromosomal genes, where present, and genome coverage also enabled phylogenetic relationships to be reconstructed. Probe-based target enrichment can improve N. gonorrhoeae genome coverage when sequencing DNA extracts directly from urine or urethral swabs, allowing for detection of AMR determinants. Additionally, multiplexing prior to enrichment provided enough genome coverage for AMR detection and reduces the costs associated with this method.


Assuntos
Anti-Infecciosos , Gonorreia , Sequenciamento por Nanoporos , Humanos , Neisseria gonorrhoeae/genética , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Gonorreia/diagnóstico , DNA
4.
Nat Commun ; 15(1): 1008, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307854

RESUMO

SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK's national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14-180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30-45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Reinfecção/epidemiologia , Reino Unido/epidemiologia
5.
Lancet Digit Health ; 6(2): e93-e104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278619

RESUMO

BACKGROUND: Multicentre training could reduce biases in medical artificial intelligence (AI); however, ethical, legal, and technical considerations can constrain the ability of hospitals to share data. Federated learning enables institutions to participate in algorithm development while retaining custody of their data but uptake in hospitals has been limited, possibly as deployment requires specialist software and technical expertise at each site. We previously developed an artificial intelligence-driven screening test for COVID-19 in emergency departments, known as CURIAL-Lab, which uses vital signs and blood tests that are routinely available within 1 h of a patient's arrival. Here we aimed to federate our COVID-19 screening test by developing an easy-to-use embedded system-which we introduce as full-stack federated learning-to train and evaluate machine learning models across four UK hospital groups without centralising patient data. METHODS: We supplied a Raspberry Pi 4 Model B preloaded with our federated learning software pipeline to four National Health Service (NHS) hospital groups in the UK: Oxford University Hospitals NHS Foundation Trust (OUH; through the locally linked research University, University of Oxford), University Hospitals Birmingham NHS Foundation Trust (UHB), Bedfordshire Hospitals NHS Foundation Trust (BH), and Portsmouth Hospitals University NHS Trust (PUH). OUH, PUH, and UHB participated in federated training, training a deep neural network and logistic regressor over 150 rounds to form and calibrate a global model to predict COVID-19 status, using clinical data from patients admitted before the pandemic (COVID-19-negative) and testing positive for COVID-19 during the first wave of the pandemic. We conducted a federated evaluation of the global model for admissions during the second wave of the pandemic at OUH, PUH, and externally at BH. For OUH and PUH, we additionally performed local fine-tuning of the global model using the sites' individual training data, forming a site-tuned model, and evaluated the resultant model for admissions during the second wave of the pandemic. This study included data collected between Dec 1, 2018, and March 1, 2021; the exact date ranges used varied by site. The primary outcome was overall model performance, measured as the area under the receiver operating characteristic curve (AUROC). Removable micro secure digital (microSD) storage was destroyed on study completion. FINDINGS: Clinical data from 130 941 patients (1772 COVID-19-positive), routinely collected across three hospital groups (OUH, PUH, and UHB), were included in federated training. The evaluation step included data from 32 986 patients (3549 COVID-19-positive) attending OUH, PUH, or BH during the second wave of the pandemic. Federated training of a global deep neural network classifier improved upon performance of models trained locally in terms of AUROC by a mean of 27·6% (SD 2·2): AUROC increased from 0·574 (95% CI 0·560-0·589) at OUH and 0·622 (0·608-0·637) at PUH using the locally trained models to 0·872 (0·862-0·882) at OUH and 0·876 (0·865-0·886) at PUH using the federated global model. Performance improvement was smaller for a logistic regression model, with a mean increase in AUROC of 13·9% (0·5%). During federated external evaluation at BH, AUROC for the global deep neural network model was 0·917 (0·893-0·942), with 89·7% sensitivity (83·6-93·6) and 76·6% specificity (73·9-79·1). Site-specific tuning of the global model did not significantly improve performance (change in AUROC <0·01). INTERPRETATION: We developed an embedded system for federated learning, using microcomputing to optimise for ease of deployment. We deployed full-stack federated learning across four UK hospital groups to develop a COVID-19 screening test without centralising patient data. Federation improved model performance, and the resultant global models were generalisable. Full-stack federated learning could enable hospitals to contribute to AI development at low cost and without specialist technical expertise at each site. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Assuntos
COVID-19 , Atenção Secundária à Saúde , Humanos , Inteligência Artificial , Privacidade , Medicina Estatal , COVID-19/diagnóstico , Hospitais , Reino Unido
6.
Eur J Clin Microbiol Infect Dis ; 43(1): 121-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980302

RESUMO

Surveillance has revealed an increase of multidrug-resistant organisms (MDROs), even in low-prevalent settings such as Norway. MDROs pose a particular threat to at-risk populations, including persons with cancer. It is necessary to include such populations in future infection surveillance. By combining existing data sources, we aimed to describe the epidemiology of MDROs in persons diagnosed with cancer in Norway from 2008 to 2018. A cohort was established using data from the Cancer Registry of Norway, which was then linked to notifications of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin- and/or linezolid-resistant enterococci (V/LRE), and carbapenemase-producing Gram-negative bacilli (CP-GNB) from the Norwegian Surveillance System for Communicable Diseases, and laboratory data on third-generation cephalosporin-resistant Enterobacterales (3GCR-E) from Oslo University Hospital (OUH). We described the incidence of MDROs and resistance proportion in Enterobacterales from 6 months prior to the person's first cancer diagnosis and up to 3 years after. The cohort included 322,005 persons, of which 0.3% (878) were diagnosed with notifiable MDROs. Peak incidence rates per 100,000 person-years were 60.9 for MRSA, 97.2 for V/LRE, and 6.8 for CP-GNB. The proportion of 3GCR-E in Enterobacterales in blood or urine cultures at OUH was 6% (746/12,534). Despite overall low MDRO incidence, there was an unfavourable trend in the incidence and resistance proportion of Gram-negative bacteria. To address this, there is a need for effective infection control and surveillance. Our study demonstrated the feasibility of expanding the surveillance of MDROs and at-risk populations through the linkage of existing laboratory and register data.


Assuntos
Doenças Transmissíveis , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Neoplasias , Enterococos Resistentes à Vancomicina , Humanos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Neoplasias/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37923370

RESUMO

BACKGROUND: Little is known about the persistence of antibodies after the first year following SARS-CoV-2 infection. We aimed to determine the proportion of individuals that maintain detectable levels of SARS-CoV-2 antibodies over an 18-month period following infection. METHODS: Population-based prospective study of 20 000 UK Biobank participants and their adult relatives recruited in May 2020. The proportion of SARS-CoV-2 cases testing positive for immunoglobulin G (IgG) antibodies against the spike protein (IgG-S), and the nucleocapsid protein (IgG-N), was calculated at varying intervals following infection. RESULTS: Overall, 20 195 participants were recruited. Their median age was 56 years (IQR 39-68), 56% were female and 88% were of white ethnicity. The proportion of SARS-CoV-2 cases with IgG-S antibodies following infection remained high (92%, 95% CI 90%-93%) at 6 months after infection. Levels of IgG-N antibodies following infection gradually decreased from 92% (95% CI 88%-95%) at 3 months to 72% (95% CI 70%-75%) at 18 months. There was no strong evidence of heterogeneity in antibody persistence by age, sex, ethnicity or socioeconomic deprivation. CONCLUSION: This study adds to the limited evidence on the long-term persistence of antibodies following SARS-CoV-2 infection, with likely implications for waning immunity following infection and the use of IgG-N in population surveys.

8.
Nature ; 623(7985): 132-138, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853126

RESUMO

Hospital-based transmission had a dominant role in Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV) epidemics1,2, but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England, we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 inpatients acquired SARS-CoV-2 in hospitals (1% to 2% of all hospital admissions in this period). Analysis of time series data provided evidence that patients who themselves acquired SARS-CoV-2 infection in hospital were the main sources of transmission to other patients. Increased transmission to inpatients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognized scale of hospital transmission, have direct implications for targeting of hospital control measures and highlight the need to design hospitals better equipped to limit the transmission of future high-consequence pathogens.


Assuntos
COVID-19 , Infecção Hospitalar , Transmissão de Doença Infecciosa , Pacientes Internados , Pandemias , Humanos , Controle de Doenças Transmissíveis , COVID-19/epidemiologia , COVID-19/transmissão , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Inglaterra/epidemiologia , Hospitais , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Quarentena/estatística & dados numéricos , SARS-CoV-2
9.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676707

RESUMO

Respiratory viral infections are a major global clinical problem, and rapid, cheap, scalable and agnostic diagnostic tests that capture genome-level information on viral variation are urgently needed. Metagenomic approaches would be ideal, but remain currently limited in that much of the genetic content in respiratory samples is human, and amplifying and sequencing the viral/pathogen component in an unbiased manner is challenging. PCR-based tests, including those which detect multiple pathogens, are already widely used, but do not capture information on strain-level variation; tests with larger viral repertoires are also expensive on a per-test basis. One intermediate approach is the use of large panels of viral probes or 'baits', which target or 'capture' sequences representing complete genomes amongst several different common viral pathogens; these are then amplified, sequenced and analysed with a sequence analysis workflow. Here we evaluate one such commercial bait capture method (the Twist Bioscience Respiratory Virus Research Panel) and sequence analysis workflow (OneCodex), using control (simulated) and patient samples head-to-head with a validated multiplex PCR clinical diagnostic test (BioFire FilmArray). We highlight the limited sensitivity and specificity of the joint Twist Bioscience/OneCodex approach, which are further reduced by shortening workflow times and increasing sample throughput to reduce per-sample costs. These issues with performance may be driven by aspects of both the laboratory (e.g. capacity to enrich for viruses present in low numbers), bioinformatics methods used (e.g. a limited viral reference database) and thresholds adopted for calling a virus as present or absent. As a result, this workflow would require further optimization prior to any implementation for respiratory virus characterization in a routine diagnostic healthcare setting.


Assuntos
Biologia Computacional , Hibridização Genética , Humanos , Fluxo de Trabalho , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase Multiplex
10.
Nat Mach Intell ; 5(8): 884-894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615031

RESUMO

As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data. Using a specialized reward function and training procedure, we show that our method achieves clinically effective screening performances, while significantly improving outcome fairness compared with current benchmarks and state-of-the-art machine learning methods. We performed external validation across three independent hospitals, and additionally tested our method on a patient intensive care unit discharge status task, demonstrating model generalizability.

11.
Nat Commun ; 14(1): 2799, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193713

RESUMO

Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.


Assuntos
Infecções Irruptivas , COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Reinfecção , Reino Unido/epidemiologia , Vacinação
12.
mBio ; 14(2): e0024323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017518

RESUMO

Clostridioides difficile remains a key cause of healthcare-associated infection, with multidrug-resistant (MDR) lineages causing high-mortality (≥20%) outbreaks. Cephalosporin treatment is a long-established risk factor, and antimicrobial stewardship is a key control. A mechanism underlying raised cephalosporin MICs has not been identified in C. difficile, but among other species, this is often acquired via amino acid substitutions in cell wall transpeptidases (penicillin binding proteins [PBPs]). Here, we investigated five C. difficile transpeptidases (PBP1 to PBP5) for recent substitutions, associated cephalosporin MICs, and co-occurrence with fluoroquinolone resistance. Previously published genome assemblies (n = 7,096) were obtained, representing 16 geographically widespread lineages, including healthcare-associated ST1(027). Recent amino acid substitutions were found within PBP1 (n = 50) and PBP3 (n = 48), ranging from 1 to 10 substitutions per genome. ß-Lactam MICs were measured for closely related pairs of wild-type and PBP-substituted isolates separated by 20 to 273 single nucleotide polymorphisms (SNPs). Recombination-corrected phylogenies were constructed to date substitution acquisition. Key substitutions such as PBP3 V497L and PBP1 T674I/N/V emerged independently across multiple lineages. They were associated with extremely high cephalosporin MICs; 1 to 4 doubling dilutions >wild-type, up to 1,506 µg/mL. Substitution patterns varied by lineage and clade, showed geographic structure, and occurred post-1990, coincident with the gyrA and/or gyrB substitutions conferring fluoroquinolone resistance. In conclusion, recent PBP1 and PBP3 substitutions are associated with raised cephalosporin MICs in C. difficile. Their co-occurrence with fluoroquinolone resistance hinders attempts to understand the relative importance of these drugs in the dissemination of epidemic lineages. Further controlled studies of cephalosporin and fluoroquinolone stewardship are needed to determine their relative effectiveness in outbreak control. IMPORTANCE Fluoroquinolone and cephalosporin use in healthcare settings has triggered outbreaks of high-mortality, multidrug-resistant C. difficile infection. Here, we identify a mechanism associated with raised cephalosporin MICs in C. difficile comprising amino acid substitutions in two cell wall transpeptidase enzymes (penicillin binding proteins). The higher the number of substitutions, the greater the impact on phenotype. Dated phylogenies revealed that substitutions associated with raised cephalosporin and fluoroquinolone MICs were co-acquired immediately before clinically important outbreak strains emerged. PBP substitutions were geographically structured within genetic lineages, suggesting adaptation to local antimicrobial prescribing. Antimicrobial stewardship of cephalosporins and fluoroquinolones is an effective means of C. difficile outbreak control. Genetic changes associated with raised MIC may impart a "fitness cost" after antibiotic withdrawal. Our study therefore identifies a mechanism that may explain the contribution of cephalosporin stewardship to resolving outbreak conditions. However, due to the co-occurrence of raised cephalosporin MICs and fluoroquinolone resistance, further work is needed to determine the relative importance of each.


Assuntos
Clostridioides difficile , Peptidil Transferases , Fluoroquinolonas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Clostridioides , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Monobactamas/farmacologia , Testes de Sensibilidade Microbiana
13.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043380

RESUMO

Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies.


Assuntos
Candida auris , Candida auris/genética , Genoma Fúngico , Filogenia , Polimorfismo de Nucleotídeo Único , Humanos , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Surtos de Doenças , Farmacorresistência Fúngica
14.
Lancet Infect Dis ; 23(8): 922-932, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001541

RESUMO

BACKGROUND: Antigen lateral flow devices (LFDs) have been widely used to control SARS-CoV-2. We aimed to improve understanding of LFD performance with changes in variant infections, vaccination, viral load, and LFD use, and in the detection of infectious individuals. METHODS: In this diagnostic study, paired LFD and RT-PCR test results were prospectively collected from asymptomatic and symptomatic participants in the UK between Nov 4, 2020, and March 21, 2022, to support the National Health Service (NHS) England's Test and Trace programme. The LFDs evaluated were the Innova SARS-CoV-2 Antigen Rapid Qualitative Test, the Orient Gene Rapid Covid-19 (Antigen) Self-Test, and the Acon Flowflex SARS-CoV-2 Antigen Rapid Test (Self-Testing). Test results were collected across various community testing settings, including predeployment testing sites, routine testing centres, homes, schools, universities, workplaces, targeted community testing, and from health-care workers. We used multivariable logistic regression to analyse LFD sensitivity and specificity using RT-PCR as a reference standard, adjusting for viral load, LFD manufacturer, test setting, age, sex, test assistance, symptom status, vaccination status, and SARS-CoV-2 variant. National contact tracing data from NHS Test and Trace (Jan 1, 2021, to Jan 11, 2022) were used to estimate the proportion of transmitting index patients (with ≥1 RT-PCR-positive or LFD-positive contact) potentially detectable by LFDs (specifically Innova, as the most widely used LFD) with time, accounting for index viral load, variant, and symptom status. FINDINGS: We assessed 75 382 pairs of LFD and RT-PCR tests. Of these, 4131 (5·5%) were RT-PCR-positive. LFD sensitivity versus RT-PCR was 63·2% (95% CI 61·7-64·6) and specificity was 99·71% (95% CI 99·66-99·74). Increased viral load was independently associated with being LFD positive (adjusted odds ratio [aOR] 2·85 [95% CI 2·66-3·06] per 1 log10 copies per mL increase; p<0·0001). There was no evidence that LFD sensitivity differed for delta (B.1.617.2) infections versus alpha (B.1.1.7) or pre-alpha (B.1.177) infections (aOR 1·00 [0·69-1·45]; p=0·99), whereas omicron (BA.1 or BA.2) infections appeared more likely to be LFD positive (aOR 1·63 [1·02-2·59]; p=0·042). Sensitivity was higher in symptomatic participants (68·7% [95% CI 66·9-70·4]) than in asymptomatic participants (52·8% [50·1-55·4]). Among 347 374 unique index patients with probable onward transmission, 78·3% (95% CI 75·3-81·2) were estimated to have been detectable with LFDs (Innova), and this proportion was mostly stable with time and for successive variants. Overall, the estimated proportion of infectious index patients detectable by the Innova LFD was lower in asymptomatic patients (57·6% [53·6-61·9]) versus symptomatic patients (79·7% [76·7-82·5]). INTERPRETATION: LFDs remained able to detect most SARS-CoV-2 infections throughout vaccine roll-out and across different viral variants. LFDs can potentially detect most infections that transmit to others and reduce the risk of transmission. However, performance is lower in asymptomatic individuals than in symptomatic individuals. FUNDING: UK Health Security Agency, the UK Government Department of Health and Social Care, National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, and the University of Oxford NIHR Biomedical Research Centre.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias , Medicina Estatal , Reino Unido/epidemiologia , Teste para COVID-19
15.
NPJ Digit Med ; 6(1): 55, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991077

RESUMO

Machine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how these tools may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating biases that may have been acquired through data collection. We demonstrate this proposed framework on the real-world task of rapidly predicting COVID-19, and focus on mitigating site-specific (hospital) and demographic (ethnicity) biases. Using the statistical definition of equalized odds, we show that adversarial training improves outcome fairness, while still achieving clinically-effective screening performances (negative predictive values >0.98). We compare our method to previous benchmarks, and perform prospective and external validation across four independent hospital cohorts. Our method can be generalized to any outcomes, models, and definitions of fairness.

16.
Sci Rep ; 13(1): 3858, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890179

RESUMO

We aimed to assess the frequency of value preferences in recording of vital signs in electronic healthcare records (EHRs) and associated patient and hospital factors. We used EHR data from Oxford University Hospitals, UK, between 01-January-2016 and 30-June-2019 and a maximum likelihood estimator to determine the prevalence of value preferences in measurements of systolic and diastolic blood pressure (SBP/DBP), heart rate (HR) (readings ending in zero), respiratory rate (multiples of 2 or 4), and temperature (readings of 36.0 °C). We used multivariable logistic regression to investigate associations between value preferences and patient age, sex, ethnicity, deprivation, comorbidities, calendar time, hour of day, days into admission, hospital, day of week and speciality. In 4,375,654 records from 135,173 patients, there was an excess of temperature readings of 36.0 °C above that expected from the underlying distribution that affected 11.3% (95% CI 10.6-12.1%) of measurements, i.e. these observations were likely inappropriately recorded as 36.0 °C instead of the true value. SBP, DBP and HR were rounded to the nearest 10 in 2.2% (1.4-2.8%) and 2.0% (1.3-5.1%) and 2.4% (1.7-3.1%) of measurements. RR was also more commonly recorded as multiples of 2. BP digit preference and an excess of temperature recordings of 36.0 °C were more common in older and male patients, as length of stay increased, following a previous normal set of vital signs and typically more common in medical vs. surgical specialities. Differences were seen between hospitals, however, digit preference reduced over calendar time. Vital signs may not always be accurately documented, and this may vary by patient groups and hospital settings. Allowances and adjustments may be needed in delivering care to patients and in observational analyses and predictive tools using these factors as outcomes or exposures.


Assuntos
Registros Eletrônicos de Saúde , Sinais Vitais , Humanos , Masculino , Idoso , Pressão Sanguínea , Hospitais Universitários , Demografia
17.
Radiology ; 306(1): 261-269, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727150

RESUMO

Background The SARS-Cov-2 Omicron variant demonstrates rapid spread but reduced disease severity. Studies evaluating lung imaging findings of Omicron infection versus non-Omicron infection remain lacking. Purpose To compare the Omicron variant with the SARS-CoV-2 Delta variant according to their chest CT radiologic pattern, biochemical parameters, clinical severity, and hospital outcomes after adjusting for vaccination status. Materials and Methods This retrospective study included hospitalized adult patients with reverse transcriptase-polymerase chain reaction test results positive for SARS-CoV-2, with CT pulmonary angiography performed within 7 days of admission between December 1, 2021, and January 14, 2022. Multiple readers performed blinded radiologic analyses that included RSNA CT classification, chest CT severity score (CTSS) (range, 0 [least severe] to 25 [most severe]), and CT imaging features, including bronchial wall thickening. Results A total of 106 patients (Delta group, n = 66; Omicron group, n = 40) were evaluated (overall mean age, 58 years ± 18 [SD]; 58 men). In the Omicron group, 37% of CT pulmonary angiograms (15 of 40 patients) were categorized as normal compared with 15% (10 of 66 patients) of angiograms in the Delta group (P = .016). A generalized linear model was used to control for confounding variables, including vaccination status, and Omicron infection was associated with a CTSS that was 7.2 points lower than that associated with Delta infection (ß = -7.2; 95% CI: -9.9, -4.5; P < .001). Bronchial wall thickening was more common with Omicron infection than with Delta infection (odds ratio [OR], 2.4; 95% CI: 1.01, 5.92; P = .04). A booster shot was associated with a protective effect for chest infection (median CTSS, 5; IQR, 0-11) when compared with unvaccinated individuals (median CTSS, 11; IQR, 7.5-14.0) (P = .03). The Delta variant was associated with a higher OR of severe disease (OR, 4.6; 95% CI: 1.2, 26; P = .01) and admission to a critical care unit (OR, 7.0; 95% CI: 1.5, 66; P = .004) when compared with the Omicron variant. Conclusion The SARS-CoV-2 Omicron variant was associated with fewer and less severe changes on chest CT images compared with the Delta variant. Patients with Omicron infection had greater frequency of bronchial wall thickening but less severe disease and improved hospital outcomes when compared with patients with Delta infection. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
COVID-19 , Hepatite D , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Estudos Retrospectivos , Hospitais , Tomografia Computadorizada por Raios X
18.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269282

RESUMO

Culture-independent metagenomic detection of microbial species has the potential to provide rapid and precise real-time diagnostic results. However, it is potentially limited by sequencing and taxonomic classification errors. We use simulated and real-world data to benchmark rates of species misclassification using 100 reference genomes for each of the ten common bloodstream pathogens and six frequent blood-culture contaminants (n=1568, only 68 genomes were available for Micrococcus luteus). Simulating both with and without sequencing error for both the Illumina and Oxford Nanopore platforms, we evaluated commonly used classification tools including Kraken2, Bracken and Centrifuge, utilizing mini (8 GB) and standard (30-50 GB) databases. Bracken with the standard database performed best, the median percentage of reads across both sequencing platforms identified correctly to the species level was 97.8% (IQR 92.7:99.0) [range 5:100]. For Kraken2 with a mini database, a commonly used combination, median species-level identification was 86.4% (IQR 50.5:93.7) [range 4.3:100]. Classification performance varied by species, with Escherichia coli being more challenging to classify correctly (probability of reads being assigned to the correct species: 56.1-96.0%, varying by tool used). Human read misclassification was negligible. By filtering out shorter Nanopore reads we found performance similar or superior to Illumina sequencing, despite higher sequencing error rates. Misclassification was more common when the misclassified species had a higher average nucleotide identity to the true species. Our findings highlight taxonomic misclassification of sequencing data occurs and varies by sequencing and analysis workflow. To account for 'bioinformatic contamination' we present a contamination catalogue that can be used in metagenomic pipelines to ensure accurate results that can support clinical decision making.


Assuntos
Nanoporos , Humanos , Benchmarking/métodos , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos
19.
Clin Infect Dis ; 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35917440

RESUMO

BACKGROUND: The SARS-CoV-2 Delta variant has been replaced by the highly transmissible Omicron BA.1 variant, and subsequently by Omicron BA.2. It is important to understand how these changes in dominant variants affect reported symptoms, while also accounting for symptoms arising from other co-circulating respiratory viruses. METHODS: In a nationally representative UK community study, the COVID-19 Infection Survey, we investigated symptoms in PCR-positive infection episodes vs. PCR-negative study visits over calendar time, by age and vaccination status, comparing periods when the Delta, Omicron BA.1 and BA.2 variants were dominant. RESULTS: Between October-2020 and April-2022, 120,995 SARS-CoV-2 PCR-positive episodes occurred in 115,886 participants, with 70,683 (58%) reporting symptoms. The comparator comprised 4,766,366 PCR-negative study visits (483,894 participants); 203,422 (4%) reporting symptoms. Symptom reporting in PCR-positives varied over time, with a marked reduction in loss of taste/smell as Omicron BA.1 dominated, maintained with BA.2 (44%/45% 17 October 2021, 16%/13% 2 January 2022, 15%/12% 27 March 2022). Cough, fever, shortness of breath, myalgia, fatigue/weakness and headache also decreased after Omicron BA.1 dominated, but sore throat increased, the latter to a greater degree than concurrent increases in PCR-negatives. Fatigue/weakness increased again after BA.2 dominated, although to a similar degree to concurrent increases in PCR-negatives. Symptoms were consistently more common in adults aged 18-65 years than in children or older adults. CONCLUSIONS: Increases in sore throat (also common in the general community), and a marked reduction in loss of taste/smell, make Omicron harder to detect with symptom-based testing algorithms, with implications for institutional and national testing policies.

20.
Viruses ; 14(8)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-36016350

RESUMO

Circadian rhythms influence and coordinate an organism's response to its environment and to invading pathogens. We studied the diurnal variation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in nasal/throat swabs collected in late 2020 to spring 2021 in a population immunologically naïve to SARS-CoV-2 and prior to widespread vaccination. SARS-CoV-2 diagnostic PCR data from 1698 participants showed a significantly higher viral load in samples obtained in the afternoon, in males, and in hospitalised patients when linear mixed modelling was applied. This study illustrates the importance of recording sample collection times when measuring viral replication parameters in clinical and research studies.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Masculino , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...